We present pyRDDLGym, a Python framework for auto-generation of OpenAI Gym environments from RDDL declerative description. The discrete time step evolution of variables in RDDL is described by conditional probability functions, which fits naturally into the Gym step scheme. Furthermore, since RDDL is a lifted description, the modification and scaling up of environments to support multiple entities and different configurations becomes trivial rather than a tedious process prone to errors. We hope that pyRDDLGym will serve as a new wind in the reinforcement learning community by enabling easy and rapid development of benchmarks due to the unique expressive power of RDDL. By providing explicit access to the model in the RDDL description, pyRDDLGym can also facilitate research on hybrid approaches for learning from interaction while leveraging model knowledge. We present the design and built-in examples of pyRDDLGym, and the additions made to the RDDL language that were incorporated into the framework.
translated by 谷歌翻译
In recent years, generative adversarial networks (GANs) have been an actively studied topic and shown to successfully produce high-quality realistic images in various domains. The controllable synthesis ability of GAN generators suggests that they maintain informative, disentangled, and explainable image representations, but leveraging and transferring their representations to downstream tasks is largely unexplored. In this paper, we propose to distill knowledge from GAN generators by squeezing and spanning their representations. We squeeze the generator features into representations that are invariant to semantic-preserving transformations through a network before they are distilled into the student network. We span the distilled representation of the synthetic domain to the real domain by also using real training data to remedy the mode collapse of GANs and boost the student network performance in a real domain. Experiments justify the efficacy of our method and reveal its great significance in self-supervised representation learning. Code is available at https://github.com/yangyu12/squeeze-and-span.
translated by 谷歌翻译
事实证明,神经操作员是无限维函数空间之间非线性算子的强大近似值,在加速偏微分方程(PDE)的溶液方面是有希望的。但是,它需要大量的模拟数据,这些数据可能成本高昂,从而导致鸡肉 - 蛋的困境并限制其在求解PDE中的使用。为了摆脱困境,我们提出了一个无数据的范式,其中神经网络直接从由离散的PDE构成的平方平方残留(MSR)损失中学习物理。我们研究了MSR损失中的物理信息,并确定神经网络必须具有对PDE空间域中的远距离纠缠建模的挑战,PDE的空间域中的模式在不同的PDE中有所不同。因此,我们提出了低级分解网络(Lordnet),该网络可调节,并且也有效地建模各种纠缠。具体而言,Lordnet通过简单的完全连接的层学习了与全球纠缠的低级别近似值,从而以降低的计算成本来提取主要模式。关于解决泊松方程和纳维尔 - 长方式方程的实验表明,MSR损失的物理约束可以提高神经网络的精确度和泛化能力。此外,Lordnet在PDE中的其他现代神经网络体系结构都优于最少的参数和最快的推理速度。对于Navier-Stokes方程式,学习的运算符的速度比具有相同计算资源的有限差异解决方案快50倍。
translated by 谷歌翻译
多摄像机跟踪系统在需要高质量跟踪结果的应用中获得普及,例如摩擦结账,因为单眼多物体跟踪(MOT)系统由于闭塞而在杂乱和拥挤的环境中经常失败。通过恢复部分3D信息,多个高度重叠的相机可以显着减轻问题。但是,使用不同的相机设置和背景创建高质量多摄像头跟踪数据集的成本在该域中的数据集比例限制了数据集尺度。在本文中,我们在自动注释系统的帮助下提供了五种不同环境的大型密集标记的多摄像头跟踪数据集。该系统使用重叠和校准的深度和RGB相机来构建高性能3D跟踪器,可自动生成3D跟踪结果。使用摄像机参数将3D跟踪结果投影到每个RGB摄像头视图以创建2D跟踪结果。然后,我们手动检查并更正3D跟踪结果以确保标签质量,比完全手动注释便宜得多。我们使用两个实时多相机跟踪器和具有不同设置的人重新识别(REID)模型进行了广泛的实验。该数据集在杂乱和拥挤的环境中提供了更可靠的多摄像头,多目标跟踪系统的基准。此外,我们的结果表明,在此数据集中调整跟踪器和REID模型显着提高了它们的性能。我们的数据集将在接受这项工作后公开发布。
translated by 谷歌翻译
文本消息传递是计算机介导的通信(CMC)最广泛使用的形式。先前的发现表明,语言因素可以可靠地表明信息为欺骗性。例如,用户要花更长的时间并使用更多的单词来制作欺骗性消息,而不是做真实的消息。现有的研究还研究了诸如学生身份和性别等因素如何影响欺骗性信息中的欺骗和单词选择率。但是,这项研究受到小样本量的限制,并返回了与发现相矛盾的结果。本文旨在使用使用Android消息传递应用程序从大型参与者集中收集的文本消息的数据集来解决这些问题。本文的结果表明,男女参与者以及学生和非学生之间的欺骗性信息的单词选择和欺骗性信息的频率有显着差异。
translated by 谷歌翻译
Ramp merging is a typical application of cooperative intelligent transportation system (C-ITS). Vehicle trajectories perceived by roadside sensors are importation complement to the limited visual field of on-board perception. Vehicle tracking and trajectory denoising algorithm is proposed in this paper to take full advantage of roadside cameras for vehicle trajectory and speed profile estimation. Dynamic speed guidance algorithm is proposed to help on-ramp vehicles to merge into mainline smoothly, even in non-cooperative environment where mainline vehicles are not expected to slow down to accommodate on-ramp vehicles. On-site experiments were taken out in a merging area of Hangzhou Belt Highway to testify our prototype system, and simulation analysis shows our proposed algorithm can achieve significant fuel savings during the ramp merging process.
translated by 谷歌翻译
Most regularized tensor regression research focuses on tensors predictors with scalars responses or vectors predictors to tensors responses. We consider the sparse low rank tensor on tensor regression where predictors $\mathcal{X}$ and responses $\mathcal{Y}$ are both high-dimensional tensors. By demonstrating that the general inner product or the contracted product on a unit rank tensor can be decomposed into standard inner products and outer products, the problem can be simply transformed into a tensor to scalar regression followed by a tensor decomposition. So we propose a fast solution based on stagewise search composed by contraction part and generation part which are optimized alternatively. We successfully demonstrate our method can out perform current methods in terms of accuracy, predictors selection by effectively incorporating the structural information.
translated by 谷歌翻译
While pre-trained Chinese language models have demonstrated impressive performance on a wide range of NLP tasks, the Chinese Spell Checking (CSC) task remains a challenge. Previous research has explored using information such as glyphs and phonetics to improve the ability to distinguish misspelled characters, with good results. However, the generalization ability of these models is not well understood: it is unclear whether they incorporate glyph-phonetic information and, if so, whether this information is fully utilized. In this paper, we aim to better understand the role of glyph-phonetic information in the CSC task and suggest directions for improvement. Additionally, we propose a new, more challenging, and practical setting for testing the generalizability of CSC models. All code is made publicly available.
translated by 谷歌翻译
The success of state-of-the-art deep neural networks heavily relies on the presence of large-scale labelled datasets, which are extremely expensive and time-consuming to annotate. This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN and labelling the generated images with an automatic annotator. In particular, we formulate the annotator learning as a learning-to-learn problem. Given a pre-trained GAN, the annotator learns to label object parts in a set of randomly generated images such that a part segmentation model trained on these synthetic images with their predicted labels obtains low segmentation error on a small validation set of manually labelled images. We further reduce this nested-loop optimization problem to a simple gradient matching problem and efficiently solve it with an iterative algorithm. We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images. Our method is evaluated with semi-supervised part segmentation tasks and significantly outperforms other semi-supervised competitors when the amount of labelled examples is extremely limited.
translated by 谷歌翻译
Due to the ambiguity of homophones, Chinese Spell Checking (CSC) has widespread applications. Existing systems typically utilize BERT for text encoding. However, CSC requires the model to account for both phonetic and graphemic information. To adapt BERT to the CSC task, we propose a token-level self-distillation contrastive learning method. We employ BERT to encode both the corrupted and corresponding correct sentence. Then, we use contrastive learning loss to regularize corrupted tokens' hidden states to be closer to counterparts in the correct sentence. On three CSC datasets, we confirmed our method provides a significant improvement above baselines.
translated by 谷歌翻译